Do Now

The Quotient Rule

Find an equation of the tangent line to the graph of f at the point (-8,5)

$$f(x) = \frac{x}{2x+4}$$

$$\frac{2x+4(1)-x(2)}{(2x+4)^{2}} \rightarrow \frac{2(x+4)^{2}}{(2x+4)^{2}} \rightarrow \frac{4}{(2x+4)^{2}}$$

$$\frac{4}{(2(-8)+4)^{2}} \rightarrow \frac{4}{(-12)^{2}} \rightarrow \frac{4}{(-12)^{2}}$$

Sep 26-9:32 PM

Given the differentiable functions, f(x) and g(x). Using the table below,

X	f(x)	g(x)	<i>f</i> ′(<i>x</i>)	1	g'(x)	7
6	-3	7	2	l	-4	

B.) Find the equation of the line tangent to f(x) at x = 6.

10-21.notebook October 21, 2019

EX #6: Using the Constant Multiple Rule to Rewrite									
Function	Rewrite	Differentiate	Simplify						
$y = \frac{x^2 - 4x}{8}$	1 x - 1 X	1/4 x - 1/2	×-1 -> × -> - × -> × -> × -> × -> × -> ×						
$y = \frac{3x^3}{5}$	3 5 3 5	9 x 5 X	<u>X-2</u> 9 <u>X</u> 2 5						
$y = \frac{6x^{\frac{5}{2}}}{x} \rightarrow 6X$	6 x	1x ²	9 1X						
$y = \frac{6x^{2}}{x} + 6x$ $y = \frac{6x^{4} + x^{3} - 2x}{x^{4} + x^{3} - 2x}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{3} - 2x}{\sqrt{x} + x^{4} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^{4}}{\sqrt{x} + x^{4}}$ $y = \frac{6x^{4} + x^{4} + x^$									

Sep 26-9:41 PM

Higher Order Derivatives

Did you realize that it is possible to take the derivative of a derivative? We will need this ability in the study of particle motion and objects in motion, especially related to physics in the near future.

$$s(t)$$
 Position function $v(t)=s'(t)$ Velocity function $a(t)=v'(t)=s''(t)$ Acceleration function

First derivative:
$$y'$$
 $f'(x)$ $\frac{dy}{dx}$ $\frac{d}{dx}[f(x)]$ $D_x[y]$

Second derivative: y''' $f''(x)$ $\frac{d^2y}{dx^2}$ $\frac{d^2}{dx^2}[f(x)]$ $D_x^2[y]$

Third derivative: y'''' $f'''(x)$ $\frac{d^3y}{dx^3}$ $\frac{d^3}{dx^3}[f(x)]$ $D_x^3[y]$

Fourth derivative: $y^{(4)}$ $f^{(4)}(x)$ $\frac{d^4y}{dx^4}$ $\frac{d^4}{dx^4}[f(x)]$ $D_x^4[y]$

Sep 26-9:56 PM

10-21.notebook October 21, 2019

EX #7: For each of the following, find the second derivative.

A.)
$$f(x) = \frac{3}{2}x^3 + 5x^2 - 6x + 1$$
$$f'(x) = \frac{9}{2}x^3 + 10x - 6$$
$$f''(x) = 9x + 10$$

B.)
$$g(x) = \frac{x^2 - 4x - 5}{x}$$

$$g(x) = x - 4 - 5x$$

$$g'(x) = 1 + 5x$$

$$g''(x) = -10x$$

$$g''(x) = -10x$$

Sep 26-10:10 PM

C.)
$$y = \frac{x}{x+2}$$

$$y' = \frac{(x+2)(1) - x(1)}{(x+2)^2}$$

$$y' = \frac{(x+2)^2}{(x+2)^2} \Rightarrow \frac{2}{(x+2)^2}$$

$$y'' = \frac{x+2-x}{(x+2)^2} \Rightarrow \frac{2}{(x+2)^2}$$

$$y''' = \frac{x+2-x}{(x+2)^2} \Rightarrow \frac{2}{(x+2)^2}$$

$$y'''' = \frac{2x+4}{(x+2)^4} \Rightarrow \frac{2x+4}{($$

Jul 27-11:19 AM