10-22.notebook October 22, 2019

10-22-19

The Chain Rule

Do Now

Use the table to write the equation for tangent lines at given values of x.

χ	f(x)	g(x)	f'(x)	g'(x)
-1	-2	4	0	3
2	-5	0	-3	DNE

1) Tangent of
$$f(x)$$
 at $x = 2$

$$(2, -5) \quad M = -3$$

$$y + 5 = -3(X - 2)$$
2) Tangent of $g(x)$ at $x = -1$

$$(-1, 4) \quad M = 3$$

$$y - 4 - 3(X + 1)$$

2) Tangent of
$$g(x)$$
 at $x = -1$
 $(-1, 4)$ $m = 3$

$$y - 4 - 3(x + 1)$$

Nov 4-10:28 AM

The Chain Rule:

If y = f(u) is a differentiable function of u, and u = g(x)is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
Or $f'(g(x)) \cdot g'(x)$

This looks more complicated than it really is. Basically, the Chain Rule says to MULTIPLY THE DERIVATIVE OF THE INSIDE FUNCTION BY THE DERIVATIVE OF THE **OUTSIDE FUNCTION.**

10-22.notebook October 22, 2019

> EX #1: Find the derivative of $f(x) = (2x+3)^2$ with and without the chain rule.

A.) without chain rule

$$f(x) = (2x+3) \begin{pmatrix} 2 \\ 2x+3 \end{pmatrix} \begin{pmatrix} 2$$

B.) with chain rule
$$f(x) = (\lambda x + 3)^{2}$$

$$U = \lambda x + 3$$

$$U$$

$$2U \cdot U'$$

$$2(\lambda x + 3)(\lambda + 3)$$

$$2(\lambda x + 3)(\lambda + 3)$$

$$2(\lambda x + 3)(\lambda + 3)$$

Jun 30-7:17 PM

$$y = (5x+3)$$

$$y' = (5x+3)(5)$$

$$y' = 4(5x+3)(5)$$

$$y' = 20(5x+3)^{3}$$

10-22.notebook October 22, 2019

The Chain Rule:
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
 or $f'g(x)g'(x)$

(Derivative of the outside function)x(derivative of the inside function)

EX #2: Find
$$f'(x)$$
 given $f(x) = (4-x^2)^3$
The inside function is $4-x^2$
The outside function is 0^3
 $f'(x) = 3(4-x^2)^3(-2x)$
 $= -6x(4-x^2)^3(-2x)$
 $= -6x(4-x^2)^3(-2x)$
 $= -6x(4-x^2)^3(-2x)$
 $= -6x(4-x^2)^3(-2x)$

Sep 22-7:24 PM

For each function below, find the derivative.

EX #3:
$$f(x) = \sqrt{(x^2 - 1)^3}$$

 $f(x) = (x^2 - 1)$
 $f'(x) = \frac{3}{2}(x^2 - 1) \cdot (2x)$
 $f'(x) = \frac{3}{2}(x^2 - 1) \cdot (2x)$
EX #4: $f(x) = \frac{-7}{(2x - 3)^2}$
 $f(x) = -7 \cdot (2x - 3)^2$
 $f'(x) = \frac{14(2x - 3)}{2} \cdot (2x)$
 $= \frac{28}{(2x - 3)^3}$

Sep 22-7:31 PM

EX#5:
$$y = \frac{1}{2x-3}$$

$$y = (2x-3)$$

$$dy = -(2x-3)(2)$$

$$= -2$$

$$(2x-3)^{2}$$

$$= (3x-3)^{2}$$
EX#6: $y = (5-4x^{2})^{2/3}$

$$dy = \frac{2}{3}(5-4x^{2})(-8x)$$

$$= \frac{-16}{3} \times \frac{3}{\sqrt{5-4x^{2}}}$$

Sep 22-7:34 PM

EX #7:
$$y = \frac{-2}{\sqrt[3]{6x+3}}$$

$$y = -2 (6x+3)^{-\frac{1}{3}}$$

$$y' = \frac{2}{3} (6x+3)^{-\frac{1}{3}} (6)$$

$$y' = \frac{4}{\sqrt{(6x+3)^{4}}}$$
EX #8: $y = -3\sqrt{x^{2}-3x-4}$