9/4/19

Understanding the Limit Graphically & Numerically

What is a limit?

Aug 28-10:08 PM

Key Analogy: Predicting A Soccer Ball

Pretend you're watching a soccer game. Unfortunately, the connection is choppy:

We missed what happened at 4:00. Even so, what's your prediction for the ball's position?

Easy. Just grab the neighboring instants (3:59 and 4:01) and predict the ball to be somewhere in-between.

And... it works! Real-world objects don't teleport; they move through intermediate positions along their path from A to B. Our prediction is "At 4:00, the ball was between its position at 3:59 and 4:01". Not bad.

With a slow-motion camera, we might even say "At 4:00, the ball was between its positions at 3:59.999 and 4:00.001".

Aug 8-7:31 PM

Aug 8-7:35 PM

A. $\lim_{x \to -5^+} f(x)$ B. $\lim_{x \to -2} f(x)$ C. $\lim_{x \to 3} f(x)$ D.) $\lim_{x \to 3^+} f(x)$ E.) $\lim_{x \to 3^-} f(x)$ F.) $\lim_{x \to -5^-} f(x)$ G.) $\lim_{x \to -5^-} f(x)$ H.) $\lim_{x \to -9} f(x)$ I.) $\lim_{x \to 4^+} f(x)$ And
No function

Limits are the "backbone" of understanding that connects algebra and geometry to the mathematics of calculus. In basic terms, a limit is just a statement that tells you what height a function *INTENDS TO REACH* as you get close to a specific *x*-value. Recall from Pre-Calculus that you evaluated three types of limits. Complete the table below:

PROPER LIMIT NOTATIONS				
TYPE OF LIMIT	PROPER NOTATION	VERBALLY:		
Right-hand limit	lim f(x)	limit as Xapproaches C from the right		
Left-hand limit	I'M f(x)	I mit as x approaches c from the left		
General limit	Im f(x)	lamit as x approaches C		

Jul 2-8:13 AM

You will use this graph to explore the limits for the problems on the next page $% \left(1\right) =\left(1\right) \left(1\right) \left$

1. $f(2) = -1$	2. f(-1) = 4
3. $\lim_{x \to 4^{-}} f(x) = 3$	4. $\lim_{x \to 2^+} f(x) = 1$
5. $\lim_{x \to 2^{-}} f(x) = -1$	6. $\lim_{x \to -1^+} f(x) = 2$
7. $\lim_{x \to -1^{-}} f(x) = 2$	$8. \lim_{x \to -4^+} f(x) = 2$
9. $\lim_{x \to -4^-} f(x) \text{ol ne}$	10. $\lim_{x \to -1} f(x) = 2$
11. $\lim_{x\to 2} f(x)$ dne	12. $\lim_{x \to 5} f(x) = -2$
13. $\lim_{x \to 0} f(x) = -1$	14. $\lim_{x \to 1} f(x) = -2$

Understanding Limits Graphically and Numerically 2019 notes 2019.note September 09, 2019

Jul 2-8:20 AM

EX #1: Use *Figure 1-1* to find the function values and evaluate each of the following limits:

·	· · · · · · · · · · · · · · · · · · ·
1. f(2)	2. f(1)
$3. \lim_{x \to 4^{-}} f(x)$	$4. \lim_{x \to 2^+} f(x)$
$5. \lim_{x \to 2^{-}} f(x)$	6. $\lim_{x \to -1^+} f(x)$
$7. \lim_{x \to -1^{-}} f(x)$	8. $\lim_{x \to -4^+} f(x)$
9. $\lim_{x \to -4^-} f(x)$	$10. \lim_{x \to -1} f(x)$
11. $\lim_{x \to 2} f(x)$	$12. \lim_{x \to 5} f(x)$
$13. \lim_{x \to 0} f(x)$	$14. \lim_{x \to 1} f(x)$

Understanding Limits Graphically and Numerically 2019 notes 2019.note September 09, 2019

EX #2: THINK ABOUT THIS!

If we think of the function as a highway, then the point $\operatorname{at}(2,-1)$ could be considered the end of the road, while the point at (-1,2) is more like a "pothole." How would you describe the points located at

(2,1) Dead End (4,3) Turn the road

Hopefully, this analogy gives you a visual reference for understanding limits from a graphical approach. Let's get a little more formal with our definition now.

When finding limits, ask yourself, "What is happening to y as x gets close to a certain number?" You are finding the **y-value** for which the function is approaching as x approaches c.

Jul 2-8:30 AM

LIMIT EXISTENCE THEOREM:

<u>Verbally</u>: The limit as x approaches c on f(x) will exist if and only if the limit as x approaches c from the left is equal to the limit as x approaches c from the right.

Jul 2-9:00 AM

EX #4: YOU OWN IT! In the box below, complete the sentence in your own words.

In order for the GENERAL LIMIT to exist, the function:

EX #5: Sketch a graph to satisfy each set of conditions.

- 1. f(a) is undefined (open cycle)
- 2. x = a is a point discontinuity
- 3. $\lim_{x \to a} f(x)$ exists

- 1. $\lim_{x \to a} f(x)$ DNE
- 2. x = a is a jump discontinuity
- 3. f(a) is undefined

Jul 2-9:10 AM

EX #6: Finding limits from a table of values

Now consider the function $f(x) = \frac{x-3}{x^2+2x-15}$

Complete the table below to find the limit as $x \rightarrow 3$.

x	2.9	2.99	2.999	3	3.001	3.01	3.1
f(x)							

Based on your analysis, what are the values of each of the limits below?

$\lim_{x \to 3^{-}} f(x) =$	$\lim_{x \to 3^+} f(x) =$	$\lim_{x \to 3} f(x) =$
-----------------------------	---------------------------	-------------------------

Sep 4-8:59 AM

