Infinite Limits and Limits at Infinity

In the lesson on Understanding Limits you were confronted with these two situations. Here we begin to compare and contrast the behavior of functions as they approach infinity, as well as, functions that tend toward infinity in certain circumstances. Let's go...

EX \#1: Use the graphs of $f(x)$ and $g(x)$ shown below to compare and contrast behaviors involving infinity.

$$
f(x)=\frac{-2 x^{2}-2 x+12}{x^{2}-6 x+8} \quad g(x)=\frac{x^{2}-2 x+5}{2 x-2}
$$

An Infinite Limit is:	A Limit at Infinity is:
$\lim _{x \rightarrow 4^{-}} f(x)=$	$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x \rightarrow 4^{+}} f(x)=$	$\lim _{x \rightarrow \infty} f(x)=$
$\lim _{x \rightarrow 1^{-}} g(x)=$	$\lim _{x \rightarrow-\infty} g(x)=$
$\lim _{x \rightarrow 1^{+}} g(x)=$	$\lim _{x \rightarrow \infty} g(x)=$
Discovery:	Discovery:

In Pre-Calculus you learned some basic truths about rational functions.

1. When a factor cancelled from the denominator a \qquad occurred.
2. When a factor would not cancel from the denominator a \qquad occurred.

EX \#2: Use the previous equations to find the limits analytically.

A. $\lim _{x \rightarrow 4^{-}} \frac{-2 x^{2}-2 x+12}{x^{2}-6 x+8}$	B. $\lim _{x \rightarrow 4^{+}} \frac{-2 x^{2}-2 x+12}{x^{2}-6 x+8}$
C. $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-2 x+5}{2 x-2}$	D. $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-2 x+5}{2 x-2}$

Definition and Justification of Vertical Asymptotes

CASE 1: $h(c)=\frac{\text { non-zero }}{\text { zero }}$	CASE 2: $h(c)=\frac{\text { zero }}{\text { zero }}$
$x=c$ is:	$x=c$ is:

IN CALCULUS, YOU MUST USE NEW LANGUAGE IN ORDER TO JUSTIFY!

LIMIT DEFINITION (JUSTIFICATION) OF A VERTICAL ASYMPTOTE

EX \#3: Use the function below to find any vertical asymptote(s) that exist. Justify your answer using limits.
$h(x)=\frac{2 x^{2}+9 x-5}{x^{2}+3 x-10}$

Limits at Infinity

Next, we will explore limits at infinity in order to differentiate between the two conditions. Recall the lessons from Pre-Calculus related to analyzing the end behavior of functions. In the exercise below, use this prior knowledge to find each limit at infinity.

EX \#4: Find each limit at infinity, explain your thinking.

A. $\lim _{x \rightarrow \infty}\left(x^{2}-4\right)\left(x^{2}+3\right)$	B. $\lim _{x \rightarrow-\infty}\left(5 x^{3}-2 x+4\right)$
C. $\lim _{x \rightarrow \infty} \frac{3 x^{2}-4}{x^{2}+1}$	D. $\lim _{x \rightarrow-\infty} \frac{5 x-2}{x^{2}+1}$

EX \#5: There are only four possible outcomes when you explore behavior to the extreme right or left.
A. The curve can increase without bound.

C. The curve can become asymptotic to the x-axis.

$$
\lim _{x \rightarrow \infty} f(x)=
$$

B. The curve can decrease without bound.

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

D. The curve can become asymptotic to a specific y-value.

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

Revisiting the rules for finding potential horizontal asymptotes for rational functions from PreCalculus, you can use the idea of a limit and calculus to see why those rules hold true.

1. If degree of numerator is less than degree of denominator (bottom heavy), then limit is zero.

$$
\lim _{x \rightarrow \pm \infty} f(x)=0
$$

2. If degree of numerator equals degree of denominator (powers equal), then limit is the ratio of coefficients of the highest degree.

$$
\lim _{x \rightarrow \pm \infty} f(x)=\frac{\text { coefficient of numerator's highest power }}{\text { coefficient of denominator's highest power }}
$$

3. If degree of numerator is greater than degree of denominator (top heavy*), then limit does not exist.

$$
\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty
$$

EX \#6: Divide every term in the rational expression by the highest power of x that appears in the denominator. Then, apply the Properties of Limits to evaluate each "piece" to find the limit at infinity, end behavior.
A. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-10 x}{x^{2}-8 x+15}$

EX \#7: Summarize and discuss characteristics and end behavior at horizontal asymptotes and slant asymptotes based on your observations in EX \#6.

Functions with Horizontal Asymptotes	Functions with Slant Asymptotes

IN CALCULUS, YOU MUST USE NEW LANGUAGE IN ORDER TO JUSTIFY!

LIMIT DEFINITION (JUSTIFICATION) OF A HORIZONTAL ASYMPTOTE

EX \#8: Use algebraic techniques to find the limits for $g(x)=\frac{3 x-3}{\sqrt{x^{2}+4}}$, whose graph is shown.

