

Aug 28-10:08 PM

Aug 8-7:35 PM

Consider the function shown below
Say you want to find $\lim _{x \rightarrow} f(x)$, the positive sign in the limit
notation indicates a right-hand limit. If you think of the function as a highway and imagine you are traveling along the graph of $f(x)$ toward $x=4$ FROM THE RIGHT, NOT TO THE RIGHT, and you stop at the vertical line $x=4$, the value where you stop is 3 . Therefore, $\lim f(x)=3$.

You will use this graph to explore the limits for the problems on the next page

Jul 2-8:20 AM

EX \#2: THINK ABOUT THIS!

If we think of the function as a highway, then the point at $(2,-1)$ could be considered the end of the road, while the point at $(-1,2)$ is more like a "pothole." How would you describe the points located at

$$
\begin{aligned}
& \text { Head end wlout a barrier } \\
& \text { bump in the road }
\end{aligned}
$$

Hopefully, this analogy gives you a visual reference for understanding limits from a graphical approach. Let's get a little more formal with our definition now.

When finding limits, ask yourself, "What is happening to y as x gets close to a certain number?" You are finding the y-value for which the function is approaching as x approaches c.

Jul 2-8:30 AM
Jul 2-8:50 AM

EX \#4: YOU OWN IT! In the box below, complete the sentence in your own words.

In order for the GENERAL LIMIT to exist, the function: must approach the Same y-vale from the left \& right hand side. However, the func. may not be defined there.

EX \#5: Sketch a graph to satisfy each set of conditions.

Jul 2-9:10 AM

EX \#6: Finding limits from a table of values
Now consider the function $f(x)=\frac{x-3}{x^{2}+2 x-15}$.
Complete the table below to find the limit as $x \rightarrow 3$.

x	2.9	2.99	2.999	ON3	3.001	3.01	3.1
${ }^{f(x)}$	0.1266	.1252	.1250	indut.	.1249	.1248	.1235

Based on your analysis, what are the values of each of the limits below?
$\lim _{x \rightarrow 3^{-}} f(x)=.125 \quad \lim _{x \rightarrow 3^{+}} f(x)=, 125 \quad \lim _{x \rightarrow 3} f(x)=.125$

Jul 2-11:01 AM

